AIRFOILS AND PLANKS

Martin Willner – <u>mjw@mjw.co.at</u> – http://www.mjw.co.at

The Plank

	Wing Data Wing Span 1000.00 mm M.A.C. Span Pos 125.00 mm Wing Name W-PW1211 Area 250000.00 mm ² Aspect Ratio 4.00 IF Symetric ® Right Wing Volume 1.24e+007 mm ³ Taper Ratio 1.00 C Left Wing Mean Geom. Choid 250.00 mm Root to Tip Sweep 0.00 * Mean Aero. Choid 250.00 mm Number of Plaps 00 * Mean Aero. Choid 250.00 mm Number of Plaps 00 *
	Pos. (mm) Chord (mm) Diffset (mm)
W-PW1211 Wing span = 1000.00 mm Wing area. = 250000.00 mm ² Plane.weight = 500.00 g Wing load = 0.002 g/nm ² Root chord = 250.00 mm M.A.C. = 250.00 mm Twist at tip = 0.0° Aspect Ratio = 4.0 Taper Ratio = 1.0	
Rt-Tip sweep = 0.0 °	PW1211 8%-fu DK PW1211 8%-fu Cancel

The airfoils

NP Calculations

W-EMX

W-PH

T1-10.0 m/s-VLM2- 0.00mm T1-10.0 m/s-VLM2- 58.00mm

W-PW1211

 The NP for the wing is @ 58.00mm from the LE for whatever type of airfoil we choose.

If the COG is @ the NP we see that the crossing point of the COG@NP and COG @ 0mm lines give a positiv GPm only for the EMX and PW1211 airfoil. Since this point is fixed for whatver COG we choose we can only get Cl>0 for the EMX and PW1211 when moving the COG position.

Cl vs. Cd @ 10m/s

CI/Cd vs. alpha @ 10m/s

CI/Cd definition – glide angle with CI/Cd >0

CI/Cd definition – glide angle with CI/Cd <0

CI/Cd @ Lift = Weight

Sink-Rate @ Lift = Weight

Riding the slope

Lift, Weight, Sink,... \rightarrow simple

CI/Cd \rightarrow simple

Cl^(3/2)/Cd vs V – power factor

Up and down...

In depth analysis

- For a given V1, V2, V3 we can change the AoA. In the case of V1, whatever AoA we choose we never get into the "Lift Area"
- For V2 we get Lift>Weight (climb) if we choose an AoA close to 3°
- For V3 we always get Lift>Weight for whatever AoA between 0° and 3° we choose
- □ → Changeing the AoA for a given airspeed reduces the sink-rate (Vz) in the first place.