PHYSICS OF THE SAL-START

Martin Willner – <u>mjw@mjw.co.at</u> – http://www.mjw.co.at

The start setup

Doing some math...

- Angular Speed: V = 2*PI*r / t = const*r/t
 - □ V_i = 2*r1*PI / t
 - □ V_c = 2*(r1+w1)*PI /t
 - **V_o** = $2^{(r1+w1+w2)} PI / t = 2^{(r1+2w1)} PI / t$
- Angular Force: F= m*v^2 / r
 - F_z = m* V_c^2 / (r1+w1) = m* (2*(r1+w1)*PI/t)^2/(r1+w1) = m*4*(r1+w1)^2*PI^2/t^2 /(r1+w1) →
 - F_z =4*m*(r1+w1)*PI^2 / t^2

Doing some physics

Classic speed to reach a hight of H meters (or speed when falling from that hight):

 $\Box V = SQRT(2^*g^*H)$

- □ Asume we throw a "stone" straight up in the air and we want to reach H=30m → V ~= 24.3m/s
- Re ~= v*chordlength*70000
- □ Time for falling from H meters:

□ T = SQRT(H*2/g) \rightarrow 2.4s

Dimensions

- \square Arm length r1 = 1m
- □ Wingspan = $1m \rightarrow w1 = w2 = 0.5m$
- \Box Weight = 0.3kg
- Duration for one 360° turn = 0.5s
- Chord lenght at root = 0.25m
- Chord lenght at tips = 0.20m

Calculation

□ V_i = 12.56 m/s

- □ V_c = 18.84 m/s = 1.5 * V_i
- □ V_o = 25.12 m/s = 2* V_i
- □ F_z = 71N = m*g → 7.23 g (g-force) "virtual" model weight is 2.1kg during launch!
- □ Re_i = 175840
- Re_c = 329700 = 1.5 * R_i
- Re_o = 351680 = 2 * R_i

One moment after the start

Going up!

Vz vs V

$V_z = V_z(V(t))$

- Climb speed is a function of V
- V is a function of time t

$$\Box \rightarrow V_z = V_z(V(t))$$

$$\Box \rightarrow H(t) = V_z(V(t))^*t$$

- Lets asume a linear V_z(V) = 4*V-20
- $\Box V = V(t) = g^*t$
- □ → $V_z(t) = 4^*g^*t-20$
- □ → Integrate over time: $int V_z(t) dt$
- $\Box \rightarrow 2^*g^*t^2-20t$
- Boundary condition: t [0, 2.4s] → 65m! (overestimated due to linear asumtion!)
- Normal throw straight up: 28.25m!

So what?

- Implicit asumtions: The AoA changes with respect to the speed correctly.
- Since CI/Cd has a maximum you should try to "level" out the airplane during launch at the specific speed to make progress in the air
- □ Launching with high AoA is bad → AoA must "fit" to the speed to produce the best lift!